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In this white paper we will estimate the unknown value of a dependent variable Y based upon the known value
of an independent variable X. We can define the actual value of the dependent variable Y to be a function of the
estimated value of Y plus an error term. We will define Ŷ (Y hat) to be the estimated value of the dependent
variable Y. The equation for the estimated value of Y is...

Ŷ = β X (1)

The actual value of Y is therefore the estimated value of Y plus an error term. Using Equation (1) above the
equation for the actual value of the dependent variable Y where ϵ is the error term is...

Y = Ŷ + ϵ

= β X + ϵ (2)

How do we go about estimating the value β in equation (1) above? We will set that variable value such that the
sum of squared estimation errors is minimized. To demonstrate these techniques we will work through the following
problem...

The Equation for Total Sum of Squared Errors and it’s Derivative

The estimation error squared is the squared difference between the actual value of Y and the estimated value of Y.
The equation for the total sum of squared errors (SSE) is therefore...
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Note that X̄ (X bar) is the mean of the observed values of the independent variable X and Ȳ (Y bar) is the mean
of the observed values of the dependent variable Y.

To calculate values for the parameters in equation (1) we will need the derivative of equation (3) with respect
to β. The derivative of equation (3) with respect to β is...
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To solve for β in equation (1) above we will set the derivative in equation (4) equal to zero and jointly solve for
these two parameters. The value of β is...
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Goodness of Fit and Standard Error of Estimate

A well-fitting regression model results in predicted values close to the observed (i.e. actual) values. The mean
model, which uses the mean of the data series for every predicted value, would be used if there were no informative
predictor variables. The fit of a proposed regression model should therefore be better than the fit of the mean model.

We defined SSE to be the sum of squared errors using our proposed regression model (Equation (3) above). We
will define SST to be the sum of squared errors using the mean model. The equations for SSE and SST are...
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The difference between SST and SSE is the improvement in predictive power from using the regression model as
compared to the mean model. The equation for R-squared is..

R-squared =
SST − SSE

SST
(7)

The value of R-squared from zero to one. Zero means that the proposed model does not improve prediction over
the mean model. One indicates perfect prediction. The closer to one that the value of R-squared gets the better
the predictive power of the regression model.

Using Equation (6) above, the equation for the regression standard error of estimate is...
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